A Secret Weapon For التعلم العميق
A Secret Weapon For التعلم العميق
Blog Article
تحليل ذكاء الأعمال للمستندات الطويلة، مثل رسائل البريد الإلكتروني والنماذج
الفصل الثالث- تمثيل التعلم بدون اشراف عميق: في هذا الفصل، سنصف هيكل المشفر الذاتي وأنواعه.
على سبيل المثال، في مثال صور الحيوانات، قد يصنف نموذج التعلم العميق "الطائرة" على أنها "سلحفاة" إذا تم بالخطأ إدخال صور لأشياء غير الحيوان في مجموعة البيانات.
وبالمثل، فإن الشبكات العصبونية للتعلم العميق، أو الشبكات العصبونية الاصطناعية، تتكون من طبقات عديدة من الخلايا العصبية الاصطناعية التي تعمل معًا داخل الكمبيوتر.
هذه مجرد بعض الاستخدامات الشائعة للتعلم العميق في تحليل البيانات. يجب أن نلاحظ أن هناك إمكانيات أكثر للاستفادة من تحليل البيانات بواسطة التعلم العميق في المستقبل، حيث ستستمر التقنيات في التطور والتحسين.
تسمى هذه العملية بالتعلم الخاضع للإشراف. في التعلم الخاضع للإشراف، لا تتحسن دقة النتائج إلا إذا كان لديك مجموعة بيانات واسعة ومتنوعة بما فيه الكفاية. على سبيل المثال، قد تحدد الخوارزمية القطط السوداء بدقة ولكنها قد تخفق في تحديد القطط البيضاء لأن مجموعة بيانات التدريب تحتوي على صور أكثر للقطط السوداء.
في الواقع، هدفنا في كتابة وتجميع محتويات هذا الكتاب هو اكتساب المعرفة الكافية بالتعلم العميق ومقارباته المختلفة من خلال التأكيد على الموضوعات الهامة والجديدة تفاصيل إضافية وتقديم رؤية شاملة للتعلم العميق.
يتم تطبيق تقنيّات التعلم العميق لتحليل مجموعات البيانات المُعقّدة، ومحاكاة التجارب، وإجراء التنبؤات في مجالات مثل الفيزياء والكيمياء وعلم الأحياء. لقد أثبت التعلم العميق قيمته بشكلٍ خاص في مهام مثل التعرُّف على الصور في التصوير الطبي، والتنبؤ ببنية البروتين، واكتشاف الأدوية، وبالتالي تسريع عمليات البحث والمُساهمة في تحقيق المزيد من الاختراقات العلميّة.
نقل التعلم وفن استخدام النماذج المدربة مسبقًا في التعلم العميق
الحيوان عيونه تشبه عيون القط، ولذلك يمكن أن يكون نوعًا من القطط البرية.
الفصل الأول – مقدمة إلى التعلم الآلي والتعلم العميق: يبدأ هذا الفصل بتعريف التعلم. بعد ذلك، يتم تلخيص ومقارنة مفهوم التعلم الآلي ومقارباته المختلفة مثل: التعلم الخاضع للإشراف، والتعلم غير الخاضع للإشراف، والمعزز، وشبه الإشراف، والإشراف الذاتي، والنشط، والاونلاين، ومتعدد المهام، والانتقالي.
في التعلم الآلي، الحتمية هي إستراتيجية مستخدمة في أثناء تطبيق أساليب التعلم الموضحة أعلاه. أي من أساليب التدريب تحت الإشراف وبدون إشراف وغيرها يمكن جعلها حتمية اعتمادًا على النتائج المطلوبة من جانب الأعمال.
لقد أظهر التعلم العميق نتائج واعدة في مجال التصوير الطبي، وتشخيص الأمراض من خلال الفحوصات الطبيَّة، والتنبؤ بنتائج الحالات المرضيّة.
الإشراف على المحتوى لإزالة المحتوى غير الآمن أو غير الملائم تلقائيًا من أرشيفات الصور ومقاطع الفيديو